UMLCAR

11/06/98
RPI Commands

8
_

University of Massachusetts Lowell
600 Suffolk St

Lowell, Massachusetts 01854

Phone 978-934-4900

Fax 978-459-7915

[image: image1.png]

[image: image2.wmf]UMLCAR

RPI Commands

A description of the flight/development commands used in communications between ASIST and RPI.

Version 1.1
Table of Contents

2Table of Contents

Table of Acronyms
3
RPI Mnemonic Label Naming Conventions
4
1.
Data Block Uploads
5
1.1.
Control of RPI automated operation
5
1.2.
RPI software upgrades
6
2.
Pass-Through Command Messages
6
2.1.
RPI Status Commands
7
2.2.
Saving contents of RPI SRAM in RPI EEPROM
7
2.3.
RPI Operational Commands
7
2.4.
Initiation of requests to CIDP
8
3.
Standard CIDP Command Messages
9
4.
RPI Development commands
10
4.1.
Mnemonics for Development Commands
10
4.2.
Development Package Formats
12
4.2.1.
ApID=0x90 Frequency Set Response Package
12
4.2.2.
ApID=0x91 Memory Read/Write Response Package
13
4.2.3.
ApID=0x92 VME Read/Write Response Package
14
4.2.4.
ApID=0x93 Digitizer Samples Package
14

Table of Acronyms

ApID
Application ID (identifier added to data packets)
ASIST
The Advanced System for Integration and Spacecraft Test
BIT
Built In Test
CIDP
Central Instrument Data Processor
EEPROM
Electrically Erasable Programmable Read-Only Memory
GSEOS
Ground Support Equipment Operating System
HK

House Keeping

IMAGE
Imager for Magnetopause-to-Aurora Global Exploration
LTD

Linear Time Domain

RPI

Radio Plasma Imager

SCU
Spacecraft Computer (the computer which controls S/C flight functions)
SI
Science Instrument

SRAM
Static Random Access Memory
UML
University of Massachusetts Lowell

UMLCAR
University of Massachusetts Lowell Center for Atmospheric Research

UTC
coordinated universal time

UUT
unit under test
VME
Virtual Memory Environment – “Eurobus” standard interface for computer boards
.
RPI Mnemonic Label Naming Conventions

Mnemonic Name
Label
Description

Field 1

Instrument Identifier
R_
Assigned to RPI Commands

Field 2

Affected component
MEM_
Affects SRAM or EEPROM memory contents

or mode
STA_
System Status Information

SYS_
System (general on-orbit commands)

REQ_
Request to CIDP

DEB_
Debugging/Testing Commands for Engineering Development

Field 3

Affected Subcomponent
HK
Built in self-test sensors, or preprogrammed test routines

SEG
A segment of memory, designated by a numeral

PROG
Program

SCHD
Schedule

SST
Schedule Start Time

TIME
Mission Elapsed Time (4 byte integer, in 0.1 sec units)

PORT
Any RPI Latch located at given VME port number

FREQ
Synthesizer & Preselector control bytes (operating freq)

PLIM
System power consumption limit

DATA
Data

DGTZ
Digitizer

CPLR
Antenna coupler

Field 4

Action
SET_
Write only the designated bits in an RPI hardware latch(es)

WRIT_
Write given byte into RPI hardware latch(es)

CLR_
Clear only the designated bits in an RPI hardware latch(es)

LOAD_
Copy message contents into RPI RAM

SEND_
Causes RPI to send information which ALREADY EXISTS

GET_
Causes RPI to take some action THEN send information

RUN_
Executes a pre-programmed function

SAVE_
Move contents of RAM to EEPROM for permanent storage

RPI Flight Commands

The following sections introduce and describe the commands designed to control the RPI instrument during the mission time. These formats are intended for external use and distribution for general control of the RPI instrument on flight.
1. Data Block Uploads

The standard Data Block Upload mechanism (see CIDP to SI Interface Control Document, section 4.1.3.2.2.6) is used to perform most of the RPI flight commanding. The SRAM of RPI is divided into enumerated segments of variable size. One SRAM segment is the smallest unit that can be uploaded during on-orbit operation.

A single Data Block Upload command may contain contents of more than one segment. To accommodate this feature, segment addresses and lengths are included in the body of the command (i.e., the data block). Thus, the addressing parameters in the first packet of the standard Data Block Upload command sequence are not used by RPI.

1.1. Control of RPI automated operation

Some “pass-through” control commands are provided (see Section 2) for immediate RPI action, but most of the operation of the RPI instrument is scheduled and controlled by uploading the contents of three control data structures:

· 64 Programs [3264 bytes],

· 32 Schedules [3872 bytes],

· 256 Schedule Start Times (SST) [1280 bytes],

and one system configuration structure:

· ARMENU [TBD bytes],

using the standard Data Block Upload mechanism.
At any time, RPI will function automatically, according to the currently active schedule. Each schedule specifies a sequence of measurement programs which is repeated by RPI. The schedule remains active until a valid schedule start time (SST) activates another schedule, or an SST table expiration time starts one of the default schedules. Schedule 0 is always empty so it puts RPI in an idle state.

System configuration structure contains a set of Red Limit checking specifications, data content selection for the real-time NOAA telemetry channel, and a table of restricted frequencies.

Each control data structure takes a single SRAM segment. No provision is made for changes to the individual parts of the three control data structures and the system configuration, with the exception of adding a single entry to the SST table via R_OPR_SET_SST command.

1.2. RPI software upgrades

Upgrades to the RPI software are done by replacing contents of SRAM segments. Each software segment starts with a set of pointers to the public procedures in the segment. The rest of RPI software routines call the public procedures via these pointers. This mechanism allows updating of the contents of individual segments without changing any of the other software segments. Once the upgraded software has been evaluated to run successfully it will be copied over, upon receipt of a R_MEM_SEG_SAVE command from the ground, into the two independent banks of EEPROM, thereby becoming the operating software which will be loaded at next power-on.
If a change is made to the starting address of a segment in SRAM or the number of public procedures available in a segment, all software segments that access the public procedures in the changed segment would have to be updated as well.

2. Pass-Through Command Messages

RPI Pass-Through command messages are received by the CIDP from the SCU and forwarded to RPI as 64-byte Ground Commands of the format shown in Table 2-1.

Table 2-1 Pass-Through Command Messages

Byte #
Description
Hex value
Comments

0..2
Sync Pattern
FEFA30

3
Header
CC

4
Checksum

bytes 5..61

5
Byte count

starting at byte 6

6
Command Stem

7..63
Command Parameters

There are four categories of RPI Pass-Through commands described in the section 2.1-2.4:

· Status commands

· EEPROM save command

· Operational commands

· CIDP command requests

2.1. RPI Status Commands

RPI status commands include collection of housekeeping information in ApID=0x02 packages and reports of SRAM and EEPROM segment contents in ApID=0x04 packages. Table 2-2 shows a description of the status commands.
Table 2-2 RPI Status Commands

Mnemonic
Command stem and

arguments
Description

R_HK_BIT_RUN
0x45
RPI will execute a Built-In Test routine, then report the results in ApID=0x02 housekeeping package

R_HK_BIT_SEND
0x46
RPI will report the latest available Built-In Test parameters in ApID=0x02 housekeeping package

R_BIT_SEG_SEND
0x49
RPI will send the memory dump of the specified segment in ApID=0x04 housekeeping packages.

 ARG1
SEG=

[unsigned char]
Segment number

2.2. Saving contents of RPI SRAM in RPI EEPROM
The remote update of software and control data structures is done to RPI SRAM. Once the changes are proved to operate correctly, the contents of RPI RAM segments can be stored permanently in RPI EEPROM (and therefore the changes are not lost if RPI is rebooted).

The memory segments can be saved to EEPROM individually or in groups (all software, all control data structures) as described in Table 2.3.

Table 2-3 Saving SRAM to EEPROM Command

Mnemonic
Command stem and

arguments
Description

R_MEM_SEG_SAVE
0x4A
Contents of the specified SRAM segment(s) are copied to RPI EEPROM.

 ARG1
SEG=

[signed char]
-1 save all SRAM software

-2 save all control data structures

 (0 save the specified segment

2.3. RPI Operational Commands

RPI implements a set of commands used for on-orbit operation as described in the Table 2‑4.
Table 2-4 RPI Operational Commands

Mnemonic
Command stem and

arguments
Command Description

R_SYS_CPLR_RUN
0x31
Perform antenna coupler rattle

R_SYS_SST_SET
0x32
Add SST to the RPI SST queue. NOTE: The RPI software will locate the SST in a time ordered stack, so there is no “SST request number”

 ARG1
MET=

[4 bytes]
MET at which to switch schedule (4-bytes)

 ARG2
SCHD=

[unsigned byte]
Schedule # to take effect at the given MET

R_SYS_PLIM_SET
0x38
Set operational power limits (and override the limits specified in RPI program)

 ARG1
PEAK=

[unsigned byte]
Peak power during transmission, in Watts (1-byte)

 ARG2
AVG=

[unsigned byte]
Energy over 1-hour/3600sec, i.e. Watts (1-byte)

R_SYS_PWR_LOW
0x81
Power Low message, duplicate to the standard CIDP command 0xD1. The CIDP command is available only as a broadcast to all instruments.

R_SYS_PWR_NOM
0x82
Nominal Power message, duplicate to the standard CIDP command 0x1D. The CIDP command is available only as a broadcast to all instruments.

R_SYS_PWR_OFF
0x84
Power Off

2.4. Initiation of requests to CIDP

Table 2-5 Requests to CIDP

Mnemonic
Command stem and

arguments
Description

R_REQ_DATA_LOAD
0x50
Request upload of a CIDP EEPROM block contents to RPI (standard SI-to-CIDP requests 0x05, 0x15, 0x25 and 0x35)

 ARG1
BLK=
[unsigned byte]
CIDP EEPROM block number

R_REQ_PWR_OFF
0x57
Send Power Off request 0x11 to CIDP

R_REQ_PWR_CYCL
0x59
Send Power Cycle request 0x12 to CIDP

3. Standard CIDP Command Messages

RPI operations rely on availability of the standard CIDP command messages listed in the Table 3-1.

Table 3-1 Standard CIDP commands essential to RPI Operations

Message Name
Header
Relevant CIDP Mnemonics

SAFE
0xDD
C_SIRPI_PWR_SAFE

C_SIALL_PWR_SAFE

LOW POWER
0xD1
C_SI_BCST_LOP

NOMINAL POWER
0x1D
C_SI_BCST_HIP

RPI Development Commands

The following sections introduce and describe the commands for controlling and testing of the RPI instrument. These formats are intended for debugging, fault detection, analysis, and hence are implemented for exclusive use of the RPI engineering team. These commands are not intended for general control of RPI on flight.
4. RPI Development commands

The development commands are stored in the ASIST database and are used during Payload and Observatory testing phase. Some of development commands result in output of development data packages (ApID=0x90, 0x91, and 0x92) to telemetry stream. The development commands will not be needed on orbit, but the RPI Flight software will continue to recognize them in order to maintain software configuration, and to provide options for on-orbit troubleshooting. The ability to indiscriminately use the development commands for on-orbit operations should however, be blocked in the ASIST software (e.g. by recognizing the “DEB_” in the Mnemonic name).
4.1. Mnemonics for Development Commands
Table 4-1 Mnemonics for Development (DEBUG) Commands

Mnemonic
Command stem and arguments
Description

R_DEB_FREQ_SET
0x70
Sets freq synthesizer, receiver preselectors and antenna coupler. Send new settings in ApID=0x90 development package.

 ARG1
FREQ=
[32 bit]
Frequency in Hz

 ARG2
MODE=
[unsigned byte]
Coupler mode:
0 or ‘N’
Normal (i.e. Tuned) setting of the Antenna Coupler

1 or ‘D’
Direct (i.e. not-Tuned), selects Bypass setting in antenna coupler

2 or ‘C’
Calibrate, selects calibration signal path in antenna coupler

3 or ‘S’
Same as 2, does not command antenna coupler

R_DEB_MEM_SEND
0x71
Perform generic read/write operation with a block of RPI memory. RPI will send an ApID=0x91 development package in response to the command.

 ARG1
MODE=
[8 bit]
‘W’
Write

‘R’
Read

 ARG2
ADDR1=
[32 bit]
Starting address

 ARG3
ADDR2=
[32 bit]
Ending address

 ARG4
VALUE=
[32 bit]
the value to write (for write commands only)

R_DEB_PORT_SEND
0x72
Sends ARG3 value (byte) to VME port address ARG2 in mode ARG1. The command results in output of development package ApID=0x92 with port status information.

 ARG1
MODE=
[8 bit]
‘R’
Read from ARG2

‘W’
Write ARG3 to ARG2

‘S’
Set bits indicated by 1’s in ARG3 mask at location ARG2

‘C’
Clear bits indicated by 1’s in ARG3 mask at location ARG2

‘I’
Invert (complement) bits indicated by 1’s in ARG3 mask at location ARG2

‘T’
Toggle (invert twice) bits indicated by 1’s in ARG3 mask at location ARG2

 ARG2
ADDR=
[32 bit]
VME address, 32-bit hexidecimal

 ARG3
VALUE=
[8 bit]
8-bit “port specific” latch contents

R_DEB_DGTZ_GET
0x73
Starts acquisition of digitizer samples and continues until new commands arrives to interrupt it. (Data is returned in special “developmental” format packages (see ApID 0x93 below).

 ARG1
BFR=
[8 bit]
Buffer number, see Table 4-2

 ARG2
BITS=
[32 bit]
Bit Bits, see Table 4-2

R_DEB_SCHD_SET
0x74
Activates the specified schedule. Currently active program is interrupted and a new program starts as specified by the new schedule

 ARG1
SCHD=
[unsigned byte]
Schedule number (0-31)

R_DEB_CAL_OFF
0x75
Calibration OFF. Next program will be executed with no correction of receiver gain or phase. The program after that will return to the automatic calibration.

R_DEB_TIME_SET
0x76
Changes system time to the given MET (4-bytes)

 ARG1
MET=

[32 bit]

R_DEB_LTD_RUN
0x77
Sets up a pre-determined loopback calibration program, acquires data and outputs in ApID=0x30 (LTD) packages

 ARG1
PROG=
[unsigned byte]
Program number (0-63)

Table 4-2 Buffer Number and Bit Bits combinations for R_DEB_DGTZ_GET command

Buffer No.
0
1
2
3

Bit Bits

0
X Ant. Samples
Y Ant. Samples
Z Ant. Samples
IFSmp & RFSmp

2
IFSMPZ + 400KB
IFSMPY + XVARI
2500B + YVARI
GND + MUX1

3
XMTR2B + C140KB
LOB + 10.56B
SYSTEMP + 95KB
X+TMP + XMTR1B

7
Y+TMP + RFX+
Y-TMP + RFX-
ZTEMP + RFY+
RFY- + Y+TMP

4.2. Development Package Formats

RPI responds to certain development commands by outputting Development Package(s) to the RS-422 port (to be received by CIDP, GSEOS, ASIST, etc.). All development packages are formatted as standard Science Data Packages, however, they are unlikely to be used during the mission time.

4.2.1. ApID=0x90 Frequency Set Response Package

The frequency set command R_DEB_FREQ_SET is acknowledged by a message giving the programmed frequency, the coupler mode character, the relay settings for all four couplers, the synthesizer control byte settings, and the preselector control byte setting (see Table 4-3).

Table 4-3 Frequency Set Response package, ApID=0x90

Byte No.
Name
Value
Comments

0..2
Sync pattern
FEFA30h

3
Header
0xDC
Data package

4
ApID
0x90

5..6
Byte Count
21
(constant)

7-10
Frequency
f<31:24>

f<23:16>
Sounding frequency in Hz.

f<15:8>

f<7:0>

11
Coupler mode
‘N’ - normal

‘D’ - direct

‘C’ - calibrate

‘S’ - calibrate-direct
This character indicates whether a special coupler mode has been selected.

12..13
Xplus relays
<15:8>

<7:0>
This 16-bit value indicates the states of the 16 relays in this antenna coupler. Bit zero equals 1 if relay K1 is on; bit 1 is 1 for relay K2, etc.

14..15
Xminus relays
 <15:8>

 <7:0>
This 16-bit value indicates the states of the 16 relays in this antenna coupler. Bit zero equals 1 if relay K1 is on; bit 1 is 1 for relay K2, etc.

16..17
Yplus relays
 <15:8>

 <7:0>
This 16-bit value indicates the states of the 16 relays in this antenna coupler. Bit zero equals 1 if relay K1 is on; bit 1 is 1 for relay K2, etc.

18..19
Yminus relays
 <15:8>

<7:0>
This 16-bit value indicates the states of the 16 relays in this antenna coupler. Bit zero equals 1 if relay K1 is on; bit 1 is 1 for relay K2, etc.

20
Reg5

LO freq = Reg5*125 kHz

21
Reg4

Synth.

+ Reg4*125 khz / 28

22
Reg3

Control

+ Reg3*125 kHz / 216

23
Reg2

Registers

+ Reg2*125 kHz / 224

24
Reg1

+ Reg1*125 kHz / 232

25
Reg0

+ Reg0*125 kHz / 240

26
Data Byte “n”
pfrq
Preselector control byte

27
Checksum

xor sum bytes 7-26

4.2.2. ApID=0x91 Memory Read/Write Response Package

The memory read/write command reply gives the starting and ending addresses of the memory block followed by the contents of the block. The format for the memory read/write command reply message is given in Table 4-4.

Table 4-4 Memory Read/Write Response package, ApID=0x91

Byte No.
Name
Byte Value
Comments

0..2
Sync pattern
FEFA30h

3
Header
0xDC
Data package

4
ApID
0x91

5..6
Byte Count

Byte Cnt = 10 + 4*(Addr2-Addr1+1)

7
Data Byte 0
‘R’ or ‘W’
‘R’ = memory block read,

‘W’ = memory block write

8..11
Starting Address
<31:24>

<23:16>

<15:8>

<7:0>
Starting address of memory block to be read/written

12..15
Ending Address
<31:24>

<23:16>

<15:8>

<7:0>
Ending address of memory block to be read/written

16..19
Data 1
<31:24>

<23:16>

<15:8>

<7:0>
32 bit word

…
…
…
…

15+4*n

Checksum
xor sum bytes 7-19

4.2.3. ApID=0x92 VME Read/Write Response Package

The VME Read/Write response package returns the VME address and contents for the affected VME port. The format for the VME read/write command reply message is given in Table 4-5.

Table 4-5 VME Read/Write Response package, ApID=0x92

Byte No.
Name
Byte Value
Comments

0..2
Sync pattern
FEFA30h

3
Header
0xDC
Data package

4
ApID
0x92

5..6
Byte Count
6

7..10
Address
<31:24>

<23:16>

<15:8>

<7:0>
VME Address of affected VME port..

11
Value

Contents of affected VME port after VME Port command is executed.

12
Checksum

xor sum bytes 7-11

4.2.4. ApID=0x93 Digitizer Samples Package

The acquire command R_DEB_DGTZ_GET continuously takes digitizer samples, sending back digitizer sample blocks as indicated below. Packets are transmitted continuously until RPI receives a new command. The format for the Digitizer Samples package is shown in Table 4-6.

Table 4-6 Digitizer Sample package, ApID=0x93

Byte No.
Name
Byte Value
Comments

0..2
Sync pattern
FEFA30h

3
Header
0xDC
Data package

4
ApID
0x93

5..6
Byte Count
4N+1
N = number of complex samples

7..8
Real 1
<15:8>

<7:0>
First real sample

9..10
Imaginary 1
<15:8>

<7:0>
First imaginary sample

11..12
Real 2
<15:8>

<7:0>
Second real sample

13..14
Imaginary 2
<15:8>

<7:0>
Second imaginary sample

…
…
…
…

Real N
<15:8>

<7:0>
Nth real sample

Imaginary N
<15:8>

<7:0>
Nth imaginary sample

4N+6
Checksum

xor sum

November 6, 1998

�EMBED Word.Picture.8���

�EMBED Word.Picture.8���

_971410998.doc
[image: image1.png]

_971411000.doc

